Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 70(1): 21-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168021

RESUMO

NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70 kDa), which is followed by experiments with the full-length protein incorporated in a lipid nanodisc (240 kDa). To overcome paramagnetic relaxation in the reduced state of POR as well as the signal broadening due to its high molecular weight, we utilized the methyl-TROSY approach. Extrinsic 13C-methyl groups were introduced by modifying the engineered surface-exposed cysteines with methyl-methanethiosulfonate. Chemical shift dispersion of the resonances from different sites in POR was sufficient to monitor differential effects of the reduction-oxidation process and conformation changes in the POR structure related to its function. Despite the high molecular weight of the POR-nanodisc complex, the surface-localized 13C-methyl probes were sufficiently mobile to allow for signal detection at 600 MHz without perdeuteration. This work demonstrates a potential of the solution methyl-TROSY in analysis of structure, dynamics, and function of POR, which may also be applicable to similar paramagnetic and flexible membrane proteins.


Assuntos
Proteínas de Membrana/química , NADPH-Ferri-Hemoproteína Redutase/química , Isótopos de Carbono , Lipídeos , Proteínas de Membrana/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Solubilidade , Relação Estrutura-Atividade
2.
Biochemistry ; 57(5): 872-881, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29280621

RESUMO

Cellular membranes are heterogeneous planar lipid bilayers displaying lateral phase separation with the nanometer-scale liquid-ordered phase (also known as "lipid rafts") surrounded by the liquid-disordered phase. Many membrane-associated proteins were found to permanently integrate into the lipid rafts, which is critical for their biological function. Isoforms H and N of Ras GTPase possess a unique ability to switch their lipid domain preference depending on the type of bound guanine nucleotide (GDP or GTP). This behavior, however, has never been demonstrated in vitro in model bilayers with recombinant proteins and therefore has been attributed to the action of binding of Ras to other proteins at the membrane surface. In this paper, we report the observation of the nucleotide-dependent switch of lipid domain preferences of the semisynthetic lipidated N-Ras in lipid raft vesicles in the absence of additional proteins. To detect segregation of Ras molecules in raft and disordered lipid domains, we measured Förster resonance energy transfer between the donor fluorophore, mant, attached to the protein-bound guanine nucleotides, and the acceptor, rhodamine-conjugated lipid, localized into the liquid-disordered domains. Herein, we established that N-Ras preferentially populated raft domains when bound to mant-GDP, while losing its preference for rafts when it was associated with a GTP mimic, mant-GppNHp. At the same time, the isolated lipidated C-terminal peptide of N-Ras was found to be localized outside of the liquid-ordered rafts, most likely in the bulk-disordered lipid. Substitution of the N-terminal G domain of N-Ras with a homologous G domain of H-Ras disrupted the nucleotide-dependent lipid domain switch.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Lipopeptídeos/análise , Microdomínios da Membrana/química , Proteínas Proto-Oncogênicas p21(ras)/análise , Corantes Fluorescentes/análise , Guanosina Difosfato/metabolismo , Humanos , Nanoestruturas , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Lipossomas Unilamelares/química , ortoaminobenzoatos/metabolismo
3.
Biochemistry ; 55(43): 5973-5976, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27741572

RESUMO

NADPH-cytochrome P450 oxidoreductase (CYPOR) was shown to undergo large conformational rearrangements in its functional cycle. Using a new Förster resonance energy transfer (FRET) approach based on femtosecond transient absorption spectroscopy (TA), we determined the donor-acceptor distance distribution in the reduced and oxidized states of CYPOR. The unmatched time resolution of TA allowed the quantitative assessment of the donor-acceptor FRET, indicating that CYPOR assumes a closed conformation in both reduced and oxidized states in the absence of the redox partner. The described ultrafast TA measurements of FRET with readily available red-infrared fluorescent labels open new opportunities for structural studies in chromophore-rich proteins and their complexes.


Assuntos
NADPH-Ferri-Hemoproteína Redutase/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica
4.
J Fluoresc ; 26(2): 379-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26662810

RESUMO

Supported phospholipid bilayers are a convenient model of cellular membranes in studies of membrane biophysics and protein-lipid interactions. Traditionally, supported lipid bilayers are formed on a flat surface of a glass slide to be observed through fluorescence microscopes. This paper describes a method to enable fluorescence detection from the supported lipid bilayers using standard horizontal-beam spectrofluorometers instead of the microscopes. In the proposed approach, the supported lipid bilayers are formed on the inner optical surfaces of the standard fluorescence microcell. To enable observation of the bilayer absorbed on the cell wall, the microcell is placed in a standard fluorometer cell holder and specifically oriented to expose the inner cell walls to both excitation and emission channels with a help of the custom cell adaptor. The signal intensity from supported bilayers doped with 1 % (mol) of rhodamine-labeled lipid in the standard 3-mm optical microcell was equivalent to fluorescence of the 70-80 nM reference solution of rhodamine recorded in a commercial microcell adaptor. Because no modifications to the instruments are required in this method, a variety of steady-state and time-domain fluorescence measurements of the supported phospholipid bilayers may be performed with the spectral resolution using standard horizontal-beam spectrofluorometers.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/análise , Rodaminas/química , Espectrometria de Fluorescência/métodos , Fluorescência
5.
Biophys J ; 109(5): 1000-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26331257

RESUMO

Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, differentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through protein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crystal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Variation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystallographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature.


Assuntos
Multimerização Proteica , Proteínas ras/química , Difusão , Modelos Moleculares , Estrutura Terciária de Proteína
6.
J Mol Biol ; 413(4): 773-89, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21945529

RESUMO

We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the "off" and "on" allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.


Assuntos
Guanosina Trifosfato/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
7.
J Biol Chem ; 278(16): 13936-43, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12582179

RESUMO

The cytoplasmic messenger ribonucleoprotein particles of mammalian somatic cells contain the protein YB-1, also called p50, as a major core component. YB-1 is multifunctional and involved in regulation of mRNA transcription and translation. Our previous studies demonstrated that YB-1 stimulates initiation of translation in vitro at a low YB-1/mRNA ratio, whereas an increase of YB-1 bound to mRNA resulted in inhibition of protein synthesis in vitro and in vivo. Here we show that YB-1-mediated translation inhibition in a rabbit reticulocyte cell-free system is followed by a decay of polysomes, which is not a result of mRNA degradation or its functional inactivation. The inhibition does not change the ribosome transit time, and therefore, it affects neither elongation nor termination of polypeptide chains and only occurs at the stage of initiation. YB-1 induces accumulation of mRNA in the form of free messenger ribonucleoprotein particles, i.e. it blocks mRNA association with the small ribosomal subunit. The accumulation is accompanied by eukaryotic initiation factor eIF4G dissociation from mRNA. The C-terminal domain of YB-1 is responsible for inhibition of translation as well as the disruption of mRNA interaction with eIF4G.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Transcrição , Animais , Northern Blotting , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/isolamento & purificação , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Sistema Livre de Células , Centrifugação com Gradiente de Concentração , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Modelos Biológicos , Fatores de Transcrição NFI , Proteínas Nucleares , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Reticulócitos/metabolismo , Ribossomos/metabolismo , Sacarose/farmacologia , Fatores de Tempo , Proteína 1 de Ligação a Y-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...